Rigid Body Rotation and the Tensor of Inertia

Angular Momentum and the Tensor of Inertia

In example 8.1, we analyzed the angular momentum of a rotating skew rod, but we found that the angular velocity and angular momentum weren’t point in the same direction. Therefore, the equation L=I0ω\vec{L} = I_0 \vec{\omega} from chapter 7 when describing fixed axis rotation no longer works ;-;

Let’s start with the definition of angular momentum and go from there:

L=Mr×pdmL=Mr×mvdmL=Mr×m(ω×r)dm\begin{align*} \vec{L} &= \int_M \vec{r} \times \vec{p} \,dm \\ \vec{L} &= \int_M \vec{r} \times m \vec{v} \,dm \\ \vec{L} &= \int_M \vec{r} \times m (\vec{\omega} \times \vec{r}) \,dm \end{align*}

You may fear the double cross product. I fear the double cross product. Let’s use a cross product identity:

A×(B×C)=(AC)B(AB)C\vec{A} \times (\vec{B} \times \vec{C}) = (\vec{A} \cdot \vec{C}) \vec{B} - (\vec{A} \cdot \vec{B}) \vec{C}

blah blah blah blah blah

(LxLyLz)=(My2+z2dmMxydmMxzdmMxydmMx2+z2dmMyzdmMxzdmMyzdmMx2+y2dm)(ωxωyωz)L=I~ω\begin{align*} \begin{pmatrix} L_x \\ L_y \\ L_z \end{pmatrix} &= \begin{pmatrix} \int_M y^2 + z^2 \,dm & -\int_M xy \,dm & -\int_M xz \,dm \\ -\int_M xy \,dm & \int_M x^2 + z^2 \,dm & -\int_M yz \,dm \\ -\int_M xz \,dm & -\int_M yz \,dm & \int_M x^2 + y^2 \,dm \end{pmatrix} \begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix} \\ \vec{L} &= \tilde{I} \vec{\omega} \end{align*}

And the inertia tensor said softly, “I am your worst nightmare.”

Principal Axes

In every rotation, you can chose your axes so the inertia tensor simplifies to

I~=(Ixx000Iyy000Izz)\tilde{I} = \begin{pmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{pmatrix}

Which is a lot better! If we label these principal axes 1, 2, and 3, then we can calculate our angular momentum in a simpler way:

L1=I1ω1L2=I2ω2L3=I3ω3\begin{align*} L_1 &= I_1 \omega_1 \\ L_2 &= I_2 \omega_2 \\ L_3 &= I_3 \omega_3 \end{align*}

Rotational Kinetic Energy of a Rigid Body